634 research outputs found

    Scattering Center Extraction and Recognition Based on ESPRIT Algorithm

    Get PDF
    Inverse Synthetic Aperture Radar (ISAR) generates high quality radar images even in low visibility. And it provides important physical features for space target recognition and location. This thesis focuses on ISAR rapid imaging, scattering center information extraction, and target classification. Based on the principle of Fourier imaging, the backscattering field of radar target is obtained by physical optics (PO) algorithm, and the relation between scattering field and objective function is deduced. According to the resolution formula, the incident parameters of electromagnetic wave are set reasonably. The interpolation method is used to realize three-dimensional (3D) simulation of aircraft target, and the results are compared with direct imaging results. CLEAN algorithm extracts scattering center information effectively. But due to the limitation of resolution parameters, traditional imaging can’t meet the actual demand. Therefore, the super-resolution Estimation of Signal Parameters via Rotational Invariance Techniques (ESPRIT) algorithm is used to obtain spatial target location information. The signal subspace and noise subspace are orthogonal to each other. By combining spatial smoothing method with ESPRIT algorithm, the physical characteristics of geometric target scattering center are obtained accurately. In particular, the proposed method is validated on complex 3D aircraft targets and it proves that this method is applied to most scattering mechanisms. The distribution of scattering centers reflects the geometric information of the target. Therefore, the electromagnetic image to be recognized and ESPRIT image are matched by the domain matching method. And the classification results under different radii are obtained. In addition, because the neural network can extract rich image features, the improved ALEX network is used to classify and recognize target data processed by ESPRIT. It proves that ESPRIT algorithm can be used to expand the existing datasets and prepare for future identification of targets in real environments. Final a visual classification system is constructed to visually display the results

    Transcending Boundary of Poetry and Painting: The Pictoriality of John Keats’s Poetry

    Get PDF
    Keats lived a short life span, but in his space of 25 years’ life, Keats showed the world his remarkable talent for poetry. The pictorial nature of Keats’ poetry is obvious. This paper takes the boundary of poetry and painting as the starting point, mainly studying pictorial embodiment, causes, and influences in his poems. Keats’ unique sense of love, imagination, and depiction of nature is strongly reflected in the sense of color and three-dimensionality in his poems, thus achieving the effect of “reading poetry as appreciating painting” for readers

    Bis(2,2′-bipyrid­yl)bromidocopper(II) bromide bromo­acetic acid hemihydrate

    Get PDF
    In the title compound, [CuBr(C10H8N2)2]Br·BrCH2COOH·0.5H2O, the CuII ion is coordinated by four N atoms [Cu—N = 1.985 (6)–2.125 (7) Å] from two 2,2′-bipyridine ligand mol­ecules and a bromide anion [Cu—Br = 2.471 (2) Å] in a distorted trigonal-bipyramidal geometry. Short centroid–centroid distances [3.762 (5) and 3.867 (5) Å] between the aromatic rings of neighbouring cations suggest the existence of π–π inter­actions. Inter­molecular O—H⋯Br hydrogen bonds and weak C—H⋯O and C—H⋯Br inter­actions consolidate the crystal packing

    Dissipation induced extended-localized transition

    Full text link
    Mobility edge (ME), representing the critical energy that distinguishes between extended and localized states, is a key concept in understanding the transition between extended (metallic) and localized (insulating) states in disordered and quasiperiodic systems. Here we explore the impact of dissipation on a quasiperiodic system featuring MEs by calculating steady-state density matrix and analyzing quench dynamics with sudden introduction of dissipation, and demonstrate that dissipation can lead the system into specific states predominantly characterized by either extended or localized states, irrespective of the initial state. Our results establish the use of dissipation as a new avenue for inducing transitions between extended and localized states, and for manipulating dynamic behaviors of particles
    corecore